Open
Posted online: 2018-11-14 06:19:48Z by Amir Moradifam
Cite as: P-181114.1
This is a previous version of the post. You can go to the current version.
Fix $u \in C^1(\Omega)$ with $|\nabla u| >0$ in $\Omega$. Let $\tilde{u} \in C^1(\Omega)$ be another function such that $u|_{\partial \Omega}=\tilde{u}|_{\partial \Omega}$, and $$ \nabla u \cdot J=|J||\nabla u| \ \ \hbox{and}\ \ \nabla \tilde{u} \cdot \tilde{J}=|\tilde{J}||\nabla \tilde{u}| \ \ $$ for some $J,\tilde{J}\in L^{\infty}(\Omega)$. Suppose $\parallel u-\tilde{u}\parallel_{L^1} \leq C_1 \parallel |J| -|\tilde{J}| \parallel_{L^{\infty}}$ and $\parallel J-\tilde{J} \parallel \leq C_2 \parallel |J| -|\tilde{J}| \parallel_{L^{\infty}}$, for some $C_1, C_2>0$. Is $\parallel \nabla u- \nabla\tilde{u}\parallel_{L^1} \leq C \parallel |J| -|\tilde{J}| \parallel_{L^{\infty}}$, for some $C>0$ independent of $\tilde{u}$? if not, provide a counterexample. One may assume $J, \tilde{J}$ are divergence-free, if necessary.
This problem arises in the stability of minimizers of least gradient problems arising in conductivity imaging.
No solutions added yet