Functions with almost parallel gradients

Open

Posted online: 2018-11-14 06:19:48Z by Amir Moradifam65

Cite as: P-181114.1

  • Analysis of PDEs
  • Functional Analysis

Problem's Description

Fix $u \in C^1(\Omega)$ with $|\nabla u| >0$ in $\Omega$. Let $\tilde{u} \in C^1(\Omega)$ be another function such that $u|_{\partial \Omega}=\tilde{u}|_{\partial \Omega}$, and $$ \nabla u \cdot J=|J||\nabla u| \ \ \hbox{and}\ \ \nabla \tilde{u} \cdot \tilde{J}=|\tilde{J}||\nabla \tilde{u}| \ \ $$ for some $J,\tilde{J}\in L^{\infty}(\Omega)$. Suppose $\parallel u-\tilde{u}\parallel_{L^1} \leq C_1 \parallel |J| -|\tilde{J}| \parallel_{L^{\infty}}$ and $\parallel J-\tilde{J} \parallel _{L^1}\leq C_2 \parallel |J| -|\tilde{J}| \parallel_{L^{\infty}}$, for some $C_1, C_2>0$. Is $\parallel \nabla u- \nabla\tilde{u}\parallel_{L^1} \leq C \parallel |J| -|\tilde{J}| \parallel_{L^{\infty}}$, for some $C>0$ independent of $\tilde{u}$? if not, provide a counterexample. One may assume $J, \tilde{J}$ are divergence-free, if necessary.

This problem arises in the stability of minimizers of least gradient problems arising in conductivity imaging.

  1. Article Uniqueness of minimizers of weighted least gradient problems arising in hybrid inverse problems

    Calculus of Variations and Partial Differential Equations 57 (6), 2018fulltext


No solutions added yet

No remarks yet